题目
提到杨辉三角形.大家应该都很熟悉.这是我国宋朝数学家杨辉在公元1261年著书《详解九章算法》提出的。 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 我们不难其规律: S1:这些数排列的形状像等腰三角形,两腰上的数都是1 S2:从右往左斜着看,第一列是1,1,1,1,1,1,1;第二列是,1,2,3,4,5,6;第三列是1,3,6,10,15;第四列是1,4,10,20;第五列是1,5,15;第六列是1,6……。 从左往右斜着看,第一列是1,1,1,1,1,1,1;第二列是1,2,3,4,5,6……和前面的看法一样。我发现这个数列是左右对称的。 S3:上面两个数之和就是下面的一行的数。 S4:这行数是第几行,就是第二个数加一。…… 现在要求输入你想输出杨辉三角形的行数n; 输出杨辉三角形的前n行.
新知识点:
多维数组最简单的形式是二维数组。一个二维数组,在本质上,是一个一维数组的列表。声明一个 x 行 y 列的二维整型数组,形式如下:
type arrayName [ x ][ y ];
其中,type 可以是任意有效的 C 数据类型,arrayName 是一个有效的 C 标识符。一个二维数组可以被认为是一个带有 x 行和 y 列的表格。下面是一个二维数组,包含 3 行和 4 列:
int x[3][4];
因此,数组中的每个元素是使用形式为 a[ i , j ] 的元素名称来标识的,其中 a 是数组名称,i 和 j 是唯一标识 a 中每个元素的下标。
多维数组可以通过在括号内为每行指定值来进行初始化。下面是一个带有 3 行 4 列的数组。
int a[3][4] = {
{0, 1, 2, 3} , /* 初始化索引号为 0 的行 */
{4, 5, 6, 7} , /* 初始化索引号为 1 的行 */
{8, 9, 10, 11} /* 初始化索引号为 2 的行 */
};
内部嵌套的括号是可选的,下面的初始化与上面是等同的:
int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};
二维数组中的元素是通过使用下标(即数组的行索引和列索引)来访问的。例如:
int val = a[2][3];
上面的语句将获取数组中第 3 行第 4 个元素。
题目解析:通过观察,可以看出每个元素的值都等于它正上方的数加上它左上方的数的和。如果用数组表示就是
f[i][j] = f[i-1][j] + f[i-1][j-1]
参考代码
#include <stdio.h>
int main() {
int a[21][21] = {0};//数组里的所有值初始化为0
int n;
while (scanf("%d", &n) ...
登录后开始许愿
三道题写了一个下午的代码,害
听着简单,动手好难
不会做啊啊啊啊啊啊