(本题满分12分)
已知数列\(\{ x_{n}\}\),\(\{ y_{n}\}\),\(\{ z_{n}\}\)满足\(x_{0}=-1\),\(y_{0}=0\),\(z_{0}=2\),且
\(\begin{cases}x_{n}=-2x_{n - 1}+2z_{n - 1}\\y_{n}=-2y_{n - 1}-2z_{n - 1}\\z_{n}=-6x_{n - 1}-3y_{n - 1}+3z_{n - 1}\end{cases}\),记\(\alpha_{n}=\begin{pmatrix}x_{n}\\y_{n}\\z_{n}\end{pmatrix}\),写出满足\(\alpha_{n}=A\alpha_{n - 1}\)的矩阵\(A\),并求\(A^{n}\)及\(x_{n}\),\(y_{n}\),\(z_{n}\)。
登录后提交答案
暂无评论,来抢沙发