(本题满分12分)
设$D = \{(x,y)| - 2 + y \leq x \leq \sqrt{4 - y^{2}},0 \leq y \leq 2\}$,求二重积分$I = \iint_{D}\frac{(x - y)^{2}}{x^{2} + y^{2}}dxdy$.
解析
如图所示:增加...
用户登录可进行刷题及查看答案
如图所示:增加一条直线$y = -x + 2$,则$y = -x + 2$将积分区域$D$分为两部分:$D_1$ 和$D - D_1$,其中$D - D_1$关于$y$轴对称,于是
\[\begin{aligned}I &= \iint_{D}\frac{x^{2}-2xy + y^{2}}{x^{2}+y^{2}}dxdy \\&= \iint_{D}\left[1 - \frac{2xy}{x^{2}+y^{2}}\right]dxdy \\&= \iint_{D}dxdy - \iint_{D}\frac{2xy}{x^{2}+y^{2}}dxdy \\&= \iint_{D}dxdy - \iint_{D - D_1}\frac{2xy}{x^{2}+y^{2}}dxdy - \iint_{D_1}\frac{2xy}{x^{2}+y^{2}}dxdy \\&= \pi + 2 - \int_{0}^{\frac{\pi}{2}}d\theta\int_{\frac{2}{\cos\theta+\sin\theta}}^{2}\frac{2\rho^{2}\cos\theta\sin\theta}{\rho^{2}}\rho d\rho \\&= \pi + 2 - 4\int_{0}^{\frac{\pi}{2}}\cos\theta\sin\theta d\theta + 4\int_{0}^{\frac{\pi}{2}}\frac{\cos\theta\sin\theta}{(\cos\theta+\sin\theta)^{2}}d\theta\end{aligned}\]
\[\begin{aligned}&= \pi + 4\int_{0}^{\frac{\pi}{2}}\frac{\cos\theta\sin\theta}{1 + 2\cos\theta\sin\theta}d\theta = \pi + 4\int_{0}^{\frac{\pi}{2}}\frac{\tan\theta}{\tan^{2}\theta + 2\tan\theta + 1}d\theta \\&= \pi + 4\int_{0}^{+\infty}\frac{t}{(t + 1)^{2}}\cdot\frac{1}{1 + t^{2}}dt = \pi + 4\cdot\frac{1}{2}\int_{0}^{+\infty}\left[\frac{1}{1 + t^{2}} - \frac{1}{(t + 1)^{2}}\right]dt \\&= \pi + 2\arctan t\big|_{0}^{+\infty} + 2\frac{1}{1 + t}\big|_{0}^{+\infty} = \pi + \pi - 2 = 2\pi - 2.\end{aligned}\]
登录后提交答案
暂无评论,来抢沙发