令\( u = \fr...
解:
令\( u = \frac{x}{y} \),则\( \frac{\partial g}{\partial x} = f'(u)\frac{1}{y} \),\( \frac{\partial g}{\partial y} = f'(u)\left(-\frac{x}{y^2}\right) \)
又\( g(x, x) = f\left(\frac{x}{x}\right) = f(1) = 1 \),\(\left.\frac{\partial g}{\partial x}\right\rvert_{(x, x)} = f'(1)\frac{1}{x} = \frac{2}{x} \),故\( f'(1) = 2 \)
\( \frac{\partial^2 g}{\partial x^2} = \left(f''(u)\frac{1}{y}\right)\frac{1}{y} = f''(u)\frac{1}{y^2} \) ......(1)
\( \frac{\partial^2 g}{\partial x\partial y} = f''(u)\left(-\frac{x}{y^2}\right)\frac{1}{y} + f'(u)\left(-\frac{1}{y^2}\right) = -\frac{x}{y^3}f''(u) - \frac{1}{y^2}f'(u) \) ..(2)
\( \frac{\partial^2 g}{\partial y^2} = f''(u)\left(-\frac{x}{y^2}\right)\frac{x}{y} + f'(u)\left(\frac{2x}{y^2}\right) = \frac{x^2}{y^4}f''(u) + \frac{2x}{y^3}f'(u) \) ...(3)
将(1)(2)(3)代入\( x^2\frac{\partial^2 g}{\partial x^2} + xy\frac{\partial^2 g}{\partial x\partial y} + y^2\frac{\partial^2 g}{\partial y^2} = 1 \)化简得:
\( u^2f''(u) + uf'(u) = 1 \),即\( f''(u) + \frac{1}{u^2}f'(u) = \frac{1}{u^2} \)。
令\( p' = f'(u) \)则\( p'' + \frac{1}{u}p' = \frac{1}{u^2} \)
\( p = e^{-\int \frac{1}{u}du}\left[\int \frac{1}{u^2}e^{\int \frac{1}{u}du}du + C\right] = \frac{1}{u}\left[\int \frac{1}{u}du + C\right] = \frac{\ln u}{u} + \frac{C}{u} \)
又\(\left.p'\right\rvert_{u = 1} = C = 2\),故\( p = \frac{\ln u}{u} + \frac{2}{u} \)
因此,\( \frac{\partial f}{\partial u} = \frac{\ln u}{u} + \frac{2}{u} \),积分得\( f(u) = \int \left(\frac{\ln u}{u} + \frac{2}{u}\right)du = \frac{1}{2}\ln^2 u + 2\ln u + C \),
又\( f(1) = C = 1 \),故\( f(u) = \frac{1}{2}\ln^2 u + 2\ln u + 1 \) 。
登录后提交答案
暂无评论,来抢沙发