设单位质点\(P,Q\)分别位于点\((0,0)\)和\((0,1)\)处,\(P\)从点\((0,0)\)出发沿\(x\)轴正向移动,记\(G\)为引力常量,则当质点\(P\)移动到点\((l,0)\)时,克服质点\(Q\)的引力所做的功为( )
A. \(\int_{0}^{l}\frac{G}{x^{2}+1}\mathrm{d}x\)
B. \(\int_{0}^{l}\frac{Gx}{(x^{2}+1)^{\frac{3}{2}}}\mathrm{d}x\)
C. \(\int_{0}^{l}\frac{G}{(x^{2}+1)^{\frac{3}{2}}}\mathrm{d}x\)
D. \(\int_{0}^{l}\frac{G(x + 1)}{(x^{2}+1)^{\frac{3}{2}}}\mathrm{d}x\)
登录后提交答案
暂无评论,来抢沙发