设矩阵\(A,B\)均为\(n\)阶方阵,若\(Ax = 0\)与\(Bx = 0\)同解,则( ).
A. \(\begin{pmatrix}A&O\\E&B\end{pmatrix}x = 0\)仅有零解
B. \(\begin{pmatrix}AB&B\\O&A\end{pmatrix}x = 0\)仅有零解
C. \(\begin{pmatrix}A&B\\O&B\end{pmatrix}x = 0\)与\(\begin{pmatrix}B&A\\O&A\end{pmatrix}x = 0\)同解
D. \(\begin{pmatrix}AB&B\\O&A\end{pmatrix}x = 0\)与\(\begin{pmatrix}BA&A\\O&B\end{pmatrix}x = 0\)同解
登录后提交答案
暂无评论,来抢沙发