(本题满分10分)计算\(\int_{0}^{1}\frac{1}{(x + 1)(x^2 - 2x + 2)}dx\)。
解: \[ \begin{fl...
用户登录可进行刷题及查看答案
解:\[\begin{flalign}\int_{0}^{1}\frac{1}{(x + 1)(x^2 - 2x + 2)}dx &= \int_{0}^{1}\left(\frac{A}{x + 1}+\frac{Bx + C}{x^2 - 2x + 2}\right)dx \nonumber \\&= \int_{0}^{1}\left(\frac{\frac{1}{5}}{x + 1}+\frac{-\frac{1}{5}x+\frac{3}{5}}{x^2 - 2x + 2}\right)dx \nonumber \\&= \frac{1}{5}\ln|1 + x|\bigg|_{0}^{1} - \frac{1}{10}\ln|x^2 - 2x + 2|\bigg|_{0}^{1} + \frac{2}{5}\arctan(x - 1)\bigg|_{0}^{1} \nonumber \\&= \frac{3}{10}\ln2 + \frac{1}{10}\pi \nonumber\end{flalign}\]
登录后提交答案
暂无评论,来抢沙发