(填空题)曲线\(y = \sqrt[3]{x^3 - 3x^2 + 1}\)的渐近线方程为______.
【解析】\(y = x - 1\)...
用户登录可进行刷题及查看答案
【解析】\(y = x - 1\)可得无水平渐近线、铅直渐近线,故求斜渐近线即可.
\(k = \lim\limits_{x \to \infty} \frac{\sqrt[3]{x^3 - 3x^2 + 1}}{x} = \lim\limits_{x \to \infty} \sqrt[3]{\frac{x^3 - 3x^2 + 1}{x^3}} = 1\)
\(\begin{align}b &= \lim\limits_{x \to \infty} \sqrt[3]{x^3 - 3x^2 + 1} - x \\&= \lim\limits_{x \to \infty} x \cdot \left( \left( 1 + \frac{1 - 3x^2}{x^3} \right)^{\frac{1}{3}} - 1 \right) \\&= \lim\limits_{x \to \infty} x \cdot \frac{1}{3} \cdot \frac{1 - 3x^2}{x^3} = -1\end{align}\)
故\(y = x - 1\).
登录后提交答案
暂无评论,来抢沙发