(填空题)微分方程\((2y - 3x)dx + (2x - 5y)dy = 0\)满足条件\(y(1) = 1\)的解为______ .
【答案】\(3x^{2}-4xy ...
用户登录可进行刷题及查看答案
【答案】\(3x^{2}-4xy + 5y^{2}=4\) 【解析】 解: \[\begin{aligned}&(2y - 3x)dx + (2x - 5y)dy = 0 \\\Rightarrow \quad &2ydx + 2xdy - 3xdx - 5ydy = 0 \\\Rightarrow \quad &d(2xy) - d\left(\frac{3}{2}x^{2}\right) - d\left(\frac{5}{2}y^{2}\right) = 0\end{aligned}\]即 \[ \begin{aligned} &d\left(2xy-\frac{3}{2}x^{2}-\frac{5}{2}y^{2}\right)= 0 \\ \Rightarrow &2xy-\frac{3}{2}x^{2}-\frac{5}{2}y^{2}= c \end{aligned} \]
又因为\[y(1) = 1\]则\[2 - \frac{3}{2} - \frac{5}{2} = c,\Rightarrow c = -2\]即\[2xy - \frac{3}{2}x^2 - \frac{5}{2}y^2 = -2\]\[3x^2 - 4xy + 5y^2 = 4\]则所求方程为\(y = \frac{2x + \sqrt{20 - 11x^2}}{5}\) 。
登录后提交答案
暂无评论,来抢沙发