设函数 \( f(x) \) 在区间 \( (0, +\infty) \) 上可导,则
A. 当 \( \lim\limits_{x \to +\infty} f(x) \) 存在时,\( \lim\limits_{x \to +\infty} f'(x) \) 存在。
B. 当 \( \lim\limits_{x \to +\infty} f'(x) \) 存在时,\( \lim\limits_{x \to +\infty} f(x) \) 存在。
C. 当 \( \lim\limits_{x \to +\infty} \frac{\int_{0}^{x} f(t)dt}{x} \) 存在时,\( \lim\limits_{x \to +\infty} f(x) \) 存在。
D. 当 \( \lim\limits_{x \to +\infty} f(x) \) 存在时,\( \lim\limits_{x \to +\infty} \frac{\int_{0}^{x} f(t)dt}{x} \) 存在。
登录后提交答案
暂无评论,来抢沙发