(填空题)已知有向曲线\( L \)是沿抛物线\( y = 1 - x^2 \)从点\( (1,0) \)到点\( (-1,0) \)的一段,则曲线积分\(\int_{L} (y + \cos x)dx + (2x + \cos y)dy = \)______。
【答案】\(\boldsymbol...
用户登录可进行刷题及查看答案
【答案】\(\boldsymbol{\frac{4}{3} - 2\sin1}\) 【解析】由题易知可作曲线如右图所示.
记\( L_0 \)是从\( x = -1 \)到\( x = 1 \)的直线, 并记曲线积\( I = \int_{L} (y + \cos x)dx + (2x + \cos y)dy \) 则在\( L_0 \)与\( L \)所围的封闭区域可用格林公式 即\( I_1 = \oint_{L_0 + L} (y + \cos x)dx + (2x + \cos y)dy \) \( = \iint_{D} 2 - 1d\sigma = \int_{-1}^{1} dx\int_{0}^{1 - x^2} dy = \int_{-1}^{1} (1 - x^2)dx = \frac{4}{3} \)
又\( I_2 = \int_{L_0} (y + \cos x)dx + (2x + \cos y)dy = \int_{-1}^{1} \cos xdx = 2\sin1 \),故\( I = \frac{4}{3} - 2\sin1 \)
登录后提交答案
暂无评论,来抢沙发