(本题满分10分)
设函数\(f(x)\)在区间\((a,b)\)内可导.证明导函数\(f'(x)\)在\((a,b)\)内严格单调增加的充分必要条件是:对\((a,b)\)内任意的\(x_1,x_2,x_3\),当\(x_1\lt x_2\lt x_3\)时\(\frac{f(x_2) - f(x_1)}{x_2 - x_1}\lt\frac{f(x_3) - f(x_2)}{x_3 - x_2}\) .
解:充分性:若对\((a,b)\)...
用户登录可进行刷题及查看答案
解:充分性:若对\((a,b)\)内任意的\(x_1,x_2,x_3\),当\(x_1\lt x_2\lt x_3\)时,都有\[\frac{f(x_2) - f(x_1)}{x_2 - x_1}\lt\frac{f(x_3) - f(x_2)}{x_3 - x_2}\]则在\((a,b)\)内取任意的\(x_1\lt x_2\lt x_3\lt x_4\lt x_5\),有\[\frac{f(x_2) - f(x_1)}{x_2 - x_1}\lt\frac{f(x_3) - f(x_2)}{x_3 - x_2}\lt\frac{f(x_4) - f(x_3)}{x_4 - x_3}\lt\frac{f(x_5) - f(x_4)}{x_5 - x_4}\]在\(\frac{f(x_2) - f(x_1)}{x_2 - x_1}\lt\frac{f(x_3) - f(x_2)}{x_3 - x_2}\)两边同时令\(x_2 \to x_1^+\),得\[f_+'(x_1)\leq\frac{f(x_3) - f(x_1)}{x_3 - x_1}\]两边同时令\(x_2 \to x_3^-\),得\(\frac{f(x_3) - f(x_1)}{x_3 - x_1}\leq f_-'(x_3)\),即\[f_+'(x_1)\leq\frac{f(x_3) - f(x_1)}{x_3 - x_1}\leq f_-'(x_3)\]同理可得\(f_+'(x_3)\leq\frac{f(x_3) - f(x_1)}{x_3 - x_1}\leq f_-'(x_5)\) .因为\[\frac{f(x_3) - f(x_1)}{x_3 - x_1}\lt\frac{f(x_5) - f(x_3)}{x_5 - x_3}\]所以\(f_+'(x_1)\leq f_-'(x_5)\) .由\(x_1,x_5\)的任意性,可得\(f'(x)\)在\((a,b)\)内严格单调递增,充分性得证。
再证必要性,即已知\(f'(x)\)单调递增,在\([x_1,x_2],[x_2,x_3]\)上分别使用拉格朗日中值定理,知存在\(\xi_1 \in (x_1,x_2),\xi_2 \in (x_2,x_3)\),使\[f'(\xi_1)=\frac{f(x_2) - f(x_1)}{x_2 - x_1}, \quad f'(\xi_2)=\frac{f(x_3) - f(x_2)}{x_3 - x_2}\]又由\(f'(x)\)单调递增,且\(\xi_1\lt\xi_2\)知,\(f'(\xi_1)\lt f'(\xi_2)\),即\[\frac{f(x_2) - f(x_1)}{x_2 - x_1}\lt\frac{f(x_3) - f(x_2)}{x_3 - x_2}\]必要性得证。
综上所述,充要条件得证。
登录后提交答案
暂无评论,来抢沙发