设函数\(f(x)\),\(g(x)\)在\(x = 0\)某去心邻域内有定义且恒不为\(0\),若\(x \to 0\)时,\(f(x)\)是\(g(x)\)的高阶无穷小,则当\(x \to 0\)时A.\(f(x)+g(x)=o(g(x))\)B.\(f(x)g(x)=o(f^2(x))\)C.\(f(x)=o(\mathrm{e}^{g(x)} - 1)\)D.\(f(x)=o(g^2(x))\)
【答案】C 【解析】由题易知,\...
用户登录可进行刷题及查看答案
【答案】C【解析】由题易知,\(x \to 0\)时,\(f(x)\)是\(g(x)\)高阶无穷小.则有\(\lim\limits_{x \to 0}\frac{f(x)}{g(x)} = 0\)及\(\lim\limits_{x \to 0}f(x) = 0\),\(\lim\limits_{x \to 0}g(x) = 0\).又\(f(x)\),\(g(x)\)在\(x = 0\)某去心邻域内有定义且不恒等于\(0\).故对于A选项,等式两端同除\(g(x)\)得:\(\frac{f(x)}{g(x)} + 1 = \frac{o[g(x)]}{g(x)}\)取极限得\(\lim\limits_{x \to 0}(\frac{f(x)}{g(x)} + 1) = \lim\limits_{x \to 0}\frac{o[g(x)]}{g(x)}\)即\(0 + 1 = 0\),显然A不成立.
对于B选项,等式两端同除\(f^2(x)\)得\(\frac{g(x)}{f(x)} = \frac{o[f^2(x)]}{f^2(x)}\)两端取极限得\(\lim\limits_{x \to 0}\frac{g(x)}{f(x)} = \lim\limits_{x \to 0}\frac{o[f^2(x)]}{f^2(x)}\),即\(\infty = 0\),显然不成立.
对于C选项,等式两端同除\(g(x)\)得\(\frac{f(x)}{g(x)} = \frac{o[\mathrm{e}^{g(x)} - 1]}{g(x)}\)取极限得\(\lim\limits_{x \to 0}\frac{f(x)}{g(x)} = \lim\limits_{x \to 0}\frac{o[\mathrm{e}^{g(x)} - 1]}{g(x)} = \lim\limits_{x \to 0}\frac{o[g(x)]}{g(x)}\)显然有\(0 = 0\),故C正确.
对于D等式两端同除\(g(x)\)得\(\frac{f(x)}{g^2(x)} = \frac{o[g^2(x)]}{g^2(x)}\)取极限得\(\lim\limits_{x \to 0}\frac{f(x)}{g^2(x)} = \lim\limits_{x \to 0}\frac{o[g^2(x)]}{g^2(x)}\),显然不成立.
综上选C.
登录后提交答案
暂无评论,来抢沙发