(填空题)$\lim\limits_{n \to \infty} \frac{1}{n^2} \left[ \ln \frac{1}{n} + 2\ln \frac{2}{n} + \cdots + (n - 1)\ln \frac{n - 1}{n} \right] =$ .
【解析】
$\lim\lim...
用户登录可进行刷题及查看答案
$\lim\limits_{n \to \infty} \frac{1}{n^2} \left[ \ln \frac{1}{n} + 2\ln \frac{2}{n} + \cdots + (n - 1)\ln \frac{n - 1}{n} \right]$
$= \lim\limits_{n \to \infty} \left( \frac{1}{n}\ln \frac{1}{n} + \frac{2}{n}\ln \frac{2}{n} + \cdots + \frac{n - 1}{n}\ln \frac{n - 1}{n} \right) \cdot \frac{1}{n}$
$= \lim\limits_{n \to \infty} \left( \frac{1}{n}\ln \frac{1}{n} + \frac{2}{n}\ln \frac{2}{n} + \cdots + \frac{n - 1}{n}\ln \frac{n - 1}{n} + \frac{n}{n}\ln \frac{n}{n} \right) \cdot \frac{1}{n}$
$= \lim\limits_{n \to \infty} \sum_{i = 1}^{n} \frac{i}{n}\ln \frac{i}{n} \cdot \frac{1}{n}$
$= \int_{0}^{1} x\ln x dx$
$= \frac{1}{2} \int_{0}^{1} \ln x dx^2 = \frac{1}{2} \left( x^2\ln x \big|_{0}^{1} - \int_{0}^{1} x^2 \cdot \frac{1}{x} dx \right)$
$= -\frac{1}{2} \int_{0}^{1} x dx = -\frac{1}{4}$
登录后提交答案
暂无评论,来抢沙发