文章
26
粉丝
407
获赞
0
访问
336.9k
二分图的最大匹配:匈牙利算法
int n1, n2;
int h[N], next_pos[N], e[N], idx;
int match[N];
bool st[N];
bool find(int x){
for (int i = h[x]; i; i = next_pos[i]){
int j = e[i];
if (!st[j]){
st[j] = true;
if (!match[j] || find(match[j])){
match[j] = x;
return true;
}
}
}
return false;
}
int ans = 0;
for (int i = 1; i <= n1; i++){
memset(st, false, sizeof st);
if (find(i)){ ans++; }
}
(1)将集合视为点集,求点集的二分图最大匹配(只保存单向)
#include<iostream>
#include<cstring>
using namespace std;
const int N = 110;
int n, m;
int g[N][N];//存放棋盘的删除点
bool st[N][N];
typedef pair<int, int>PII;
PII ret[N][N];
int dx[4] = { -1, 0, 1, 0 };
int dy[4] = { 0, 1, 0, -1 };
bool find(PII x){//判断点x作为未被匹配的点出发是否存在增广路径
for (int i = 0; i < 4; i++){
int a = x.first + dx[i]; int b = x.second + dy[i];
if (a <= 0 || a>n || b <= 0 || b > n || g[a][b] || st[a][b]){
continue;
}
st[a][b] = true;
if (ret[a][b].first == 0 || fin...
登录后发布评论
暂无评论,来抢沙发