文章
14
粉丝
132
获赞
7
访问
33.9k
题目描述
一个整数总可以拆分为2的幂的和,例如:
7=1+2+4
7=1+2+2+2
7=1+1+1+4
7=1+1+1+2+2
7=1+1+1+1+1+2
7=1+1+1+1+1+1+1
总共有六种不同的拆分方式。用f(n)表示n的不同拆分的种数,例如f(7)=6. 要求编写程序,读入n(不超过1000000),输出f(n)%1000000000。
题目分析
记f(n)为n的划分数,我们有递推公式:
f(2m + 1) = f(2m),
f(2m) = f(2m - 1) + f(m),
初始条件:f(1) = 1。
证明:
证明的要点是考虑划分中是否有1。
记:
A(n) = n的所有划分组成的集合,
B(n) = n的所有含有1的划分组成的集合,
C(n) = n的所有不含1的划分组成的集合,
则有: A(n) = B(n)∪C(n)。
又记:
f(n) = A(n)中元素的个数,
g(n) = B(n)中元素的个数,
h(n) = C(n)中元素的个数,
易知: f(n) = g(n) + h(n)。
以上记号的具体例子见文末。
我们先来证明: f(2m + 1) = f(2m),
首先,2m + 1 的每个划分中至少有一个1,去掉这个1,就得到 2m 的一个划分,故 f(2m + 1)≤f(2m)。
其次,2m 的每个划分加上个1,就构成了 2m + 1 的一个划分,故 f(2m)≤f(2m + 1)。
综上,f(2m + 1) = f(2m)。
接着我们要证明: f(2m) = f(2m - 1) + f(m),
把 B(2m) 中的划分中的1去掉一个,就得到 A(2m - 1) 中的一个划分,故 g(2m)≤f(2m - 1)。
把 A(2m - 1) 中的划分加上一个1,就得到 B(2m) 中的一个划分,故 f(2m - 1)≤g(2m)。
综上,g(2m) = f(2m - 1)。
把 C(2m) 中的划分的元素都除以2,就得到 A(m) 中的一个划分,故 h(2m)≤f(m)。
把 A(m) 中的划分的元素都乘2,就得到 C(2m) 中的一个划分,故 f(m)≤h(2m)。
综...
登录后发布评论
暂无评论,来抢沙发