文章
102
粉丝
72
获赞
0
访问
5.4k
-i-k
评分及理由
(1)得分及理由(满分4分)
学生作答:-i-k
标准答案:\(\vec{i} - \vec{k}\)
理由:旋度\(\text{rot}\vec{F}\)(即\(\nabla \times \vec{F}\))的计算公式为: \[ \nabla \times \vec{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) \vec{i} - \left( \frac{\partial F_z}{\partial x} - \frac{\partial F_x}{\partial z} \right) \vec{j} + \left( \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) \vec{k} \] 给定\(\vec{F}(x, y, z) = xy\vec{i} - yz\vec{j} + xz\vec{k}\),计算各分量: \[ \frac{\partial F_z}{\partial y} = \frac{\partial (xz)}{\partial y} = 0, \quad \frac{\partial F_y}{\partial z} = \frac{\partial (-yz)}{\partial z} = -y \] \[ \frac{\partial F_z}{\partial x} = \frac{\partial (xz)}{\partial x} = z, \quad \frac{\partial F_x}{\partial z} = \frac{\partial (xy)}{\partial z} = 0 \] \[ \frac{\partial F_y}{\partial x} = \frac{\partial (-yz)}{\partial x} = 0, \quad \frac{\partial F_x}{\partial y} = \frac{\partial (xy)}{\partial y} = x \] 因此, \[ \nabla \t...
登录后发布评论
暂无评论,来抢沙发