文章
102
粉丝
72
获赞
0
访问
5.1k
i-k
评分及理由
(1)得分及理由(满分4分)
学生作答为"i-k",这表示向量$\vec{i} - \vec{k}$,与标准答案$\vec{i} - \vec{k}$完全一致。计算旋度$\text{rot}\vec{F}$(即$\nabla \times \vec{F}$)的公式为: $$ \nabla \times \vec{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right)\vec{i} - \left( \frac{\partial F_z}{\partial x} - \frac{\partial F_x}{\partial z} \right)\vec{j} + \left( \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right)\vec{k} $$ 其中$\vec{F} = (xy, -yz, xz)$。计算各分量: - $i$分量:$\frac{\partial (xz)}{\partial y} - \frac{\partial (-yz)}{\partial z} = 0 - (-y) = y$ - $j$分量:$-\left[ \frac{\partial (xz)}{\partial x} - \frac{\partial (xy)}{\partial z} \right] = -[z - 0] = -z$ - $k$分量:$\frac{\partial (-yz)}{\partial x} - \frac{\partial (xy)}{\partial y} = 0 - x = -x$ 因此$\text{rot}\vec{F} = y\vec{i} - z\vec{j} - x\vec{k}$。在点$(1,1,0)$处,代入得$1\cdot\vec{i} - 0\cdot\vec{j} - 1\cdot\vec{k} = \vec{i} - \vec{k}$。学生答案正确且无逻辑错误,得满分4分。
题目总分:4分
登录后发布评论
暂无评论,来抢沙发