文章

44

粉丝

0

获赞

0

访问

931

头像
2010年考研数学(一)考试试题 - 第15题回答
高等数学
发布于2025年10月1日 11:41
阅读数 27


评分及理由

(1)齐次方程求解(满分3分)

学生正确写出特征方程 \(r^2 - 3r + 2 = 0\),并正确解得特征根 \(r_1 = 2, r_2 = 1\),得到齐次通解 \(y = C_1e^{2x} + C_2e^x\)。此部分与标准答案完全一致,得3分。

(2)特解形式设定(满分3分)

学生正确设出特解形式 \(y^* = (ax + b)xe^x\)(即 \((ax^2 + bx)e^x\)),注意到 \(e^x\) 已是齐次解,故乘以 \(x\) 是正确的。此部分与标准答案一致,得3分。

(3)特解系数确定与通解表达(满分4分)

学生代入方程后正确解得 \(a = -1, b = -2\),并写出最终通解 \(y = (-x^2 - 2x)e^x + C_1e^{2x} + C_2e^x\)。此结果与标准答案 \(y = C_1e^{2x} + C_2e^x - x(x+2)e^x\) 等价(展开后一致),计算过程正确。得4分。

题目总分:3+3+4=10分

登录查看完整内容


登录后发布评论

暂无评论,来抢沙发