文章
44
粉丝
0
获赞
0
访问
901
评分及理由
(1)得分及理由(满分6分)
第1次识别:学生正确写出正交对角化关系式,但在构造正交矩阵Q时,第一列向量选择与标准答案不同(符号相反),但经过计算后得到的矩阵A与标准答案一致。由于正交矩阵的列向量方向选择不唯一(只要满足正交规范基),且最终计算结果正确,因此不扣分。但存在一处书写不规范:标准形矩阵写为2×2形式而非3×3,但后续使用3×3矩阵计算,可视为笔误。给分6分。
第2次识别:思路清晰,计算过程完整,矩阵A结果正确。给分6分。
综合两次识别,第(1)问得6分。
(2)得分及理由(满分5分)
第1次识别:学生正确写出合同变换关系,但将Q^T(A+E)Q的结果写为分块对角形式(2×2和1×1),而非完整的3×3对角矩阵,这是不规范表达。不过特征值计算正确(2,2,1),并正确得出正定结论。扣1分。给分4分。
第2次识别:证明过程完整规范,正确计算特征值并得出正定结论。给分5分。
综合两次识别,第(2)问得5分。
题目总分:6+5=11分
登录后发布评论
暂无评论,来抢沙发