评分及理由
(1)得分及理由(满分4分)
学生答案:\(\frac{4\sqrt{2}}{3}\),标准答案:\(\frac{2}{3}\)。
曲率计算公式为 \(k = \frac{|x'y'' - x''y'|}{(x'^2 + y'^2)^{3/2}}\)。计算过程如下:
- \(x = \cos^3 t,\ y = \sin^3 t\)
- \(x' = -3\cos^2 t \sin t,\ y' = 3\sin^2 t \cos t\)
- \(x'' = -3\cos^3 t + 6\cos t \sin^2 t,\ y'' = -3\sin^3 t + 6\sin t \cos^2 t\)
- 在 \(t = \frac{\pi}{4}\) 时:
- \(\cos t = \sin t = \frac{\sqrt{2}}{2}\)
- \(x' = -\frac{3\sqrt{2}}{4},\ y' = \frac{3\sqrt{2}}{4}\)
- \(x'' = \frac{3\sqrt{2}}{4},\ y'' = \frac{3\sqrt{2}}{4}\)
- 分子:\(|x'y'' - x''y'| = \left|(-\frac{3\sqrt{2}}{4})(\frac{3\sqrt{2}}{4}) - (\frac{3\sqrt{2}}{4})(\frac{3\sqrt{2}}{4})\right| = \left|-\frac{18}{16} - \frac{18}{16}\right| = \frac{36}{16} = \frac{9}{4}\)
- 分母:\((x'^2 + y'^2)^{3/2} = \left(\frac{18}{16}\right)^{3/2} = \left(\frac{9}{8}\right)^{3/2} = \frac{27}{16\sqrt{2}}\)
- 曲率:\(k = \frac{9/4}{27/(16\sqrt{2})} = \frac{9}{4} \times \frac{16\sqrt{2}}{27} = \frac{4\sqrt{2}}{3}\)
学生的计算过程正确,但标...
登录后发布评论
暂无评论,来抢沙发