文章
104
粉丝
0
获赞
0
访问
8.0k
1
评分及理由
(1)得分及理由(满分5分)
学生给出的答案是1,与标准答案一致。
该题目要求计算函数\(u(x,y,z)=xy^{2}z^{3}\)在点\((1,1,1)\)处沿方向\(\boldsymbol{n}=(2,2,-1)\)的方向导数。方向导数的计算公式为:
\[ \frac{\partial u}{\partial \boldsymbol{n}} = \nabla u \cdot \frac{\boldsymbol{n}}{\|\boldsymbol{n}\|} \]其中梯度\(\nabla u = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right)\)。
计算梯度:
\[ \frac{\partial u}{\partial x} = y^2 z^3,\quad \frac{\partial u}{\partial y} = 2xy z^3,\quad \frac{\partial u}{\partial z} = 3xy^2 z^2 \]在点\((1,1,1)\)处:
\[ \nabla u(1,1,1) = (1, 2, 3) \]方向向量\(\boldsymbol{n}=(2,2,-1)\)的模为:
\[ \|\boldsymbol{n}\| = \sqrt{2^2 + 2^2 + (-1)^2} = \sqrt{9} = 3 \]单位方向向量为:
\[ \frac{\boldsymbol{n}}{\|\boldsymbol{n}\|} = \left(\frac{2}{3}, \frac{2}{3}, -\frac{1}{3}\right) \]方向导数为:
\[ \frac{\partial u}{\partial \boldsymbol{n}} = (1, 2, 3) \cdot \left(\frac{2}{3}, \frac{2}{3}, -\frac{1}{3}\right) = \frac{2}{3} + \frac{4}{3} - \frac{3}{3} = \frac{3}{3} = 1 \]学生答案正确,得5分。
题目总分:5分
登录后发布评论
暂无评论,来抢沙发