文章
443
粉丝
1110
获赞
2147
访问
153w
{0,1,y-1}
评分及理由
(1)得分及理由(满分4分)
学生作答为:{0,1,y-1}
标准答案为:{0,1,y-1}
该向量场的旋度计算公式为:
$$\text{rot}\boldsymbol{A} = \left(\frac{\partial Q}{\partial y} - \frac{\partial P}{\partial z},\ \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x},\ \frac{\partial R}{\partial x} - \frac{\partial Q}{\partial y}\right)$$
其中 $\boldsymbol{A} = (P,Q,R) = (x+y+z, xy, z)$
计算得:
第一分量:$\frac{\partial Q}{\partial y} - \frac{\partial P}{\partial z} = \frac{\partial (xy)}{\partial y} - \frac{\partial (x+y+z)}{\partial z} = x - 1$
第二分量:$\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} = \frac{\partial (x+y+z)}{\partial z} - \frac{\partial z}{\partial x} = 1 - 0 = 1$
第三分量:$\frac{\partial R}{\partial x} - \frac{\partial Q}{\partial y} = \frac{\partial z}{\partial x} - \frac{\partial (xy)}{\partial y} = 0 - x = -x$
学生答案中的第三分量为 $y-1$,与正确结果 $-x$ 不符,存在计算错误。
因此该题得0分。
题目总分:0分
登录后发布评论
暂无评论,来抢沙发