文章
443
粉丝
1110
获赞
2147
访问
153w
{0,1,y-1}
评分及理由
(1)得分及理由(满分4分)
学生作答为:{0,1,y-1},与标准答案\(\{0,1, y-1\}\)完全一致。旋度计算公式为: \[ \text{rot}\boldsymbol{A} = \left( \frac{\partial Q}{\partial y} - \frac{\partial P}{\partial z}, \frac{\partial P}{\partial x} - \frac{\partial R}{\partial y}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \] 其中\(\boldsymbol{A} = (P, Q, R) = (x+y+z, xy, z)\)。计算可得: - 第一分量:\(\frac{\partial Q}{\partial y} - \frac{\partial P}{\partial z} = x - 1\)?等等,重新计算: \(\frac{\partial Q}{\partial y} = \frac{\partial (xy)}{\partial y} = x\),\(\frac{\partial P}{\partial z} = \frac{\partial (x+y+z)}{\partial z} = 1\),所以第一分量为\(x - 1\)?但标准答案是0。这里需要仔细核对: 实际上旋度公式为: \[ \nabla \times \boldsymbol{A} = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} \] 展开后: - \(\boldsymbol{i}\)分量:\(\frac{\partial R}{\partial y} - \frac{\partial...
登录后发布评论
暂无评论,来抢沙发