文章
95
粉丝
0
获赞
0
访问
6.4k

评分及理由
(1)得分及理由(满分4分)
向量场的旋度计算公式为: \[ \text{rot}\boldsymbol{A} = \left( \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}, \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}, \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) \] 其中 \(\boldsymbol{A} = (x+y+z, xy, z)\)。计算各分量: - 第一分量:\(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} = \frac{\partial z}{\partial y} - \frac{\partial (xy)}{\partial z} = 0 - 0 = 0\) - 第二分量:\(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} = \frac{\partial (x+y+z)}{\partial z} - \frac{\partial z}{\partial x} = 1 - 0 = 1\) - 第三分量:\(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} = \frac{\partial (xy)}{\partial x} - \frac{\partial (x+y+z)}{\partial y} = y - 1\)
标准答案为 \((0, 1, y-1)\),学生答案为 \((0, -1, y+1)\)。第二分量应为1但学生得到-1,第三分量应为\(y-1\)但学生得到\(y+1\)。这两个分量的计算存在明显的逻辑错误,不符合旋度的定义和计算规则。因此本题得0分。
题目总分:0分
登录后发布评论
暂无评论,来抢沙发