文章

108

粉丝

0

获赞

18

访问

8.1k

头像
2025年李林冲刺预测6套卷(四) - 第18题回答
高等数学
发布于2025年11月3日 11:32
阅读数 25


评分及理由

(1)得分及理由(满分12分)

学生作答中,首先正确描述了直线段L绕z轴旋转得到的曲面S1的方程,并正确识别了S1与S2围成的封闭立体。但在应用高斯公式时存在严重逻辑错误:

  1. 学生试图通过挖去原点(令\(x^2+y^2+z^2=\varepsilon^2\))来处理被积函数在原点不连续的问题,但辅助曲面的选取和方向处理有误。标准答案中取的是充分小的球面S0(取外侧),而学生没有明确说明辅助曲面的方向。
  2. 最关键的错误在于计算\(\oiint_{S_2} \frac{xdydz+ydzdx+zdxdy}{\varepsilon^3}\)时,学生直接应用高斯公式得到\(\frac{4\pi}{3}\),这是错误的。正确计算应该是:在球面S0上,由于取内侧,应用高斯公式应为\(-\frac{3}{\varepsilon^3} \cdot \frac{4}{3}\pi\varepsilon^3 = -4\pi\)。
  3. 学生忽略了原被积函数散度为0这一关键性质,导致整个计算思路出现偏差。

考虑到学生正确识别了曲面方程和封闭区域,但在核心计算部分存在严重错误,给分4分。

题目总分:4分

登录查看完整内容


登录后发布评论

暂无评论,来抢沙发