评分及理由
(1)得分及理由(满分4分)
学生给出的答案是"(π-1)dx-dy",这与标准答案"\((\pi-1) d x-d y\)"完全一致。
计算全微分的思路正确:先求偏导数 \(\frac{\partial z}{\partial x}\) 和 \(\frac{\partial z}{\partial y}\) 在点 \((0,\pi)\) 处的值,然后代入全微分公式 \(dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy\)。
具体计算过程:
- 设 \(u = xy + \sin(x+y)\),则 \(z = \arctan u\)
 
- \(\frac{\partial z}{\partial x} = \frac{1}{1+u^2} \cdot (y + \cos(x+y))\)
 
- \(\frac{\partial z}{\partial y} = \frac{1}{1+u^2} \cdot (x + \cos(x+y))\)
 
- 在点 \((0,\pi)\) 处:\(u = 0\cdot\pi + \sin(0+\pi) = 0\)
 
- \(\frac{\partial z}{\partial x}|_{(0,\pi)} = \frac{1}{1+0} \cdot (\pi + \cos\pi) = \pi - 1\)
 
- \(\frac{\partial z}{\partial y}|_{(0,\pi)} = \frac{1}{1+0} \cdot (0 + \cos\pi) = -1\)
 
- 所以 \(dz|_{(0,\pi)} = (\pi-1)dx - dy\)
 
学生答案完全正确,得满分4分。
题目总分:4分
 
    
登录后发布评论
暂无评论,来抢沙发